

* Analytical[®]

Technologies Limited

Analytical Technologies Sizer 3002 is smart wet dispersion particle analyzer with reliable measurement performance from submicron to millimeter. Driven by Standard Operation Procedure (SOP), the instrument minimizes manual participation and makes particle size measurement fast and routine.

EPC / PRODUCTS / APPLICATION / SOFTWARE / ACCESSORIES / CONSUMABLES / SERVICES

Analytical Technologies Limited

An ISO 9001 Certified Company

www.analyticalgroup.net

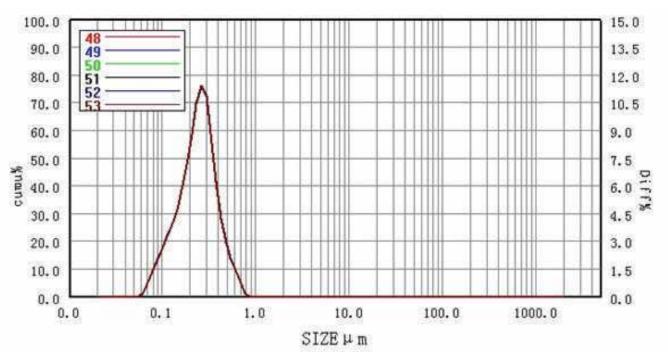
Features/Benefits:

- Measuring range: 0.02μm to 2000μm
- ★ Accuracy: ≤0.5% (GBRM D50)
- ★ Repeatability: ≤0.5% (GBRM D50)
- Detector: 90 pieces (forward, lateral, backward)
- ★ Typical measurement time: ≤10second
- Dual Lenses Optical System (DLOS)
- Standard Operation Procedure (SOP)
- Automatic Centering
- Automatic alignment
- * High-performance fiber lasers with long lifespan.

Intelligent Particle Sizing Performance

Analytical

Technologies Limited


1. Repeatability: ≤0.5% (GBRM D50)

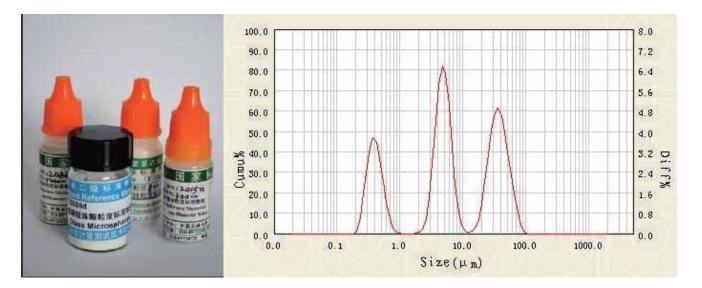
Reproducibility : ≤0.5% (GBRM D50)

The assured measurement performance and wide dynamic range of Analytical Technologies Sizer 3002 makes it suitable for a diverse range of applications. The results under same analysis conditions yield good repeatability and reproducibility as shown in the following graphs.

a) Repeatability: ≤0.5% (GBRM D50)

item	D 3	D6	DIO	D16	D25	D50	D75	D84	190	D97	D98
7	2.961	3.602	4 151	4.731	5.400	6.975	8.360	9 830	10.36	1295	13.77
3	2 907	3.567	4 113	4700	5.371	6946	8.828	9.844	10.82	12.91	1370
9	2 394	3.561	4 111	4,693	5.362	6.928	8,793	9.797	10.75	12.83	13.57
10	2,891	3,556	4 103	4 690	5.357	6 921	8,780	9779	10.73	1230	13.52
11	2 894	3 559	4 110	4 691	5.380	6 905	8.737	9.788	10.74	12.81	13.54
12	2,905	3 583	4 133	4.714	5.385	6.960	8 844	9.862	10 34	13.93	1374
Rep.	0.82%	0.50%	0 41%	0.35%	0.31%	0.31%	0.33%	0.43%	0.525	0.51%	0.30%

Analytical

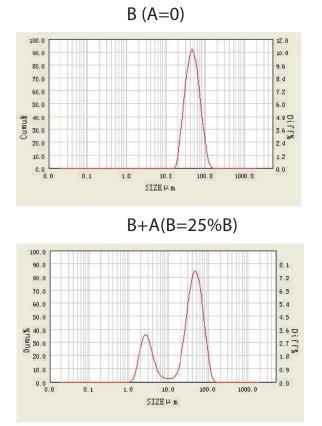

Technologies Limited

b) Reproducibility: ≤0.5% (GBRM D50)

2. Accuracy: ≤0.5% (GBRM D50)

The accuracy of Analytical Technologies Sizer 3002 as verified by measurements of standard samples

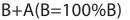
a) Analytical Technologies Sizer 3002 tested certified referenceSizer materials and resolved three peaks

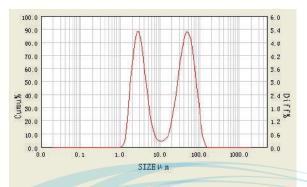


a) Analytical Technologies Sizer 3002 tested Standard Sample to verify Accuracy

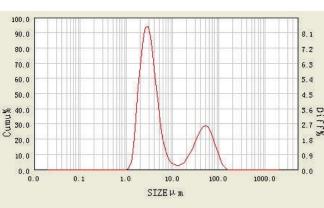
	bration R	esult.		
粒度工作样		/	Ì	
钙 (CaC0)	ltem	010	DS0	D90
钙 (CaC0) i0=17.01µm p ⁰⁰⁰ 出来: 1.596+0.1i 特仪器有限的	ltem Standard Measured Deviation Result	D10 2.34 +-0.3 2.36 0.02 Passed	D50 17.01 ←1.5 16.99 -0.02 Passed	D90 46.69 +-3.5 46.79 0.10 Passed

3. Resolution and Sensitivity

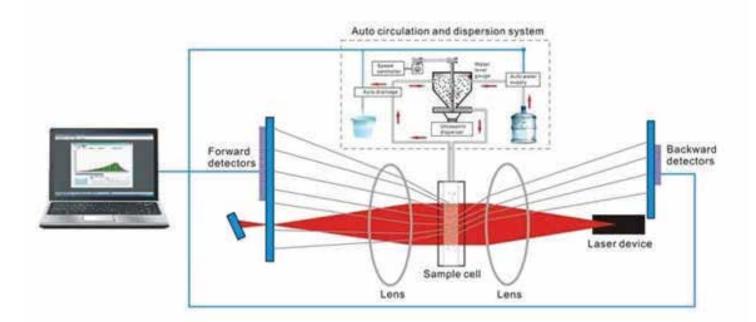

The resolution and sensitivity of Analytical Technologies Sizer 3002 as verified by measurement that sample A is gradually added to the sample B. With the addition of sample A, the results change correspondingly.


B+A(B=5%B)100.0 90.0 9.0 80.0 8.0 7.0 70.0 6.0 60.0 5.0 50.0 40.0 30.0 20.0 4.0 9 5.0 FF 2.0 1.0 10.0 0.0 0.1 1.0 10.0 100.0 1000.0

Analytical

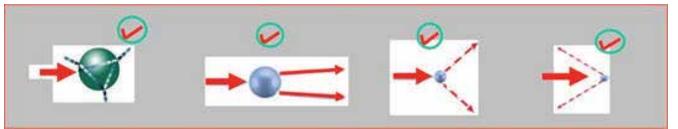

Technologies Limited

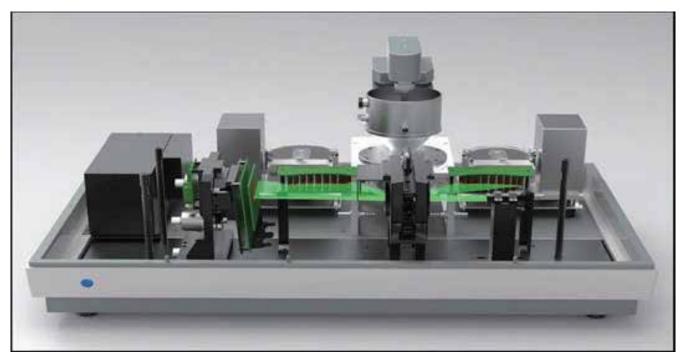
SIZE



Technologies for Reliable Measurement

1. Dual Lenses Optical System (DLOS)

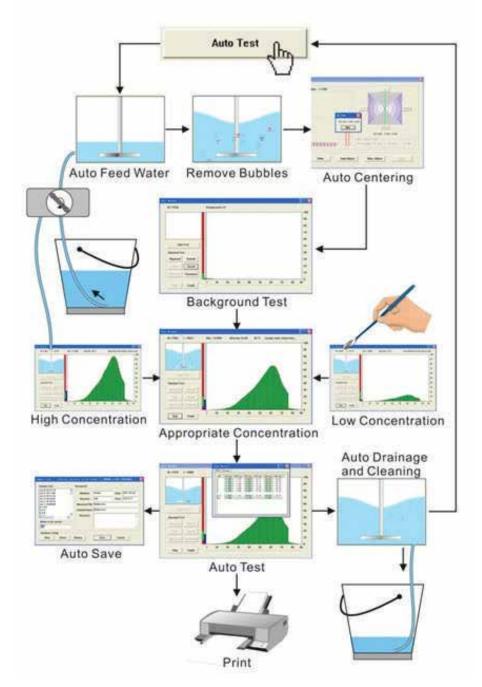

Based on Fourier optical system, DLOS is a technical innovation made by us. It detects backward scattered laser by symmetrically adding a second lens behind the sample cell. The second lens also functions as a collimating lens which turns the diverging laser beam into parallel beam. The parallel beam impeding on the sample cell have the advantage of large and constant intensity circle of illumination of the sample. In a laser diffraction measurement, the forward and backward diffraction lasers generated by a single laser source have a consistent wavelength, datum, and continuity, provides superior accuracy across a wide size range.



Features and benefits of DLOS:

* Achieve wide measuring range from $0.02\mu m$ to $2000\mu m$.

- The second lens can collimate the laser beam as well as detect backward scattering light.
- 90 surrounded detectors collect scattering light at wide angles to improve the resolution ratio and measuring accuracy.

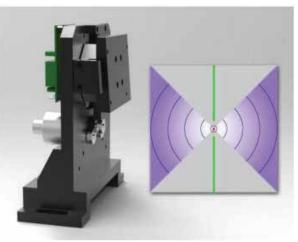

2. Standard Operation Procedure (SOP)

Analysis by one mouse click:

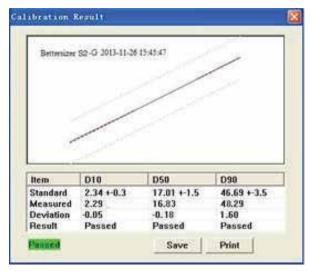
SOP of Analytical Technologies Sizer3002 provides an intuitive solution for standardized and automatic testing. Click once on the auto test button, the testing procedure will run by itself, including water intake, bubble removal, background and obscuration measurement, testing, rinsing, and result save and print. Just add sample and the automatic analysis procedure is just one mouse click away.

SOP not only provides a simplified procedure but also avoids human operation error; therefore, it ensures the repeatability and accuracy of testing results.

3. Automatic Circulation and Dispersion System:


The wet circulation and dispersion system of Analytical Technologies Sizer 3002 ensures a complete sample dispersion hence make sure that each particle would be accounted for through the laser system.

4. Automatic Centering Guarantee the perfect condition of optical system:


By moving the laser detector center point to the focus point of lens before each test, automatic centering function guarantees the perfect condition of optical system, therefore, provides accurate and repeatable testing results.

Automatic centering

5. Accuracy Calibration

Maintain accurate datum lifetime: This function makes operate parameters maintained at consistent conditions, producing consistent and reproducible measurement across the board for all old and new instruments alike.

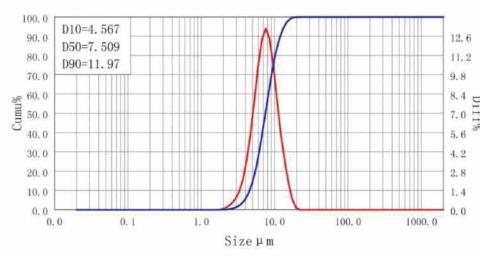
Accuracy Calibration

Sizer 3002 Particle Size Analyzing Report

Technologies Limited

Technologies Limited										
Sample: Ternar	У				Sample Ov	wner JARA	AMY ANALYSIS			
Medium: Water Dis			ersant: Measured By: Analytical Technolo				tical Technolog	ogies Limited		
			tical: Mie		Operator: LM					
Medium RI: 1.3		Mode: 2.35 General		Date: 2017-06-27			Time : 16:39:31			
	Mode									
Remark: (1:3.0	O)-1-(03)							Distribut	ion:V	olume
D 50 : 7.509	um	D [4,3] :	7.928	um	D [3,2] :	6.899	um	0BS.:	12.19	%
SPAN : 0.986		D [2,1] :	5.932	um	SSA:	3220 cm	^2/g	Residual :	:0.357	%
			ım ım	D10 = 4. D84 = 10			5.138 um 11.97 um	D 25 = 5 D 97 = 1		um um
D50 = 7.509 ur	n D7	5 = 9.606 u	IM	D84 = 10	0.79 um	D90 =	·11.97 um	D 97 = 1	14.53	um
D50 = 7.509 ur Diam um	n D7 Diff%	5 = 9.606 u	lm Dial	D84 = 10 m um	0.79 um Diff%	D90 =	11.97 um Diamum	D97 =) Diff	14.53	um Cumu9
D50 = 7.509 ur Diam um 0.020-0.024	n D77	5 = 9.606 u Cumu%	im Diai 0.911	D84 = 10 m um 1-1.161	0.79 um Diff% 0.00	D90 =	11.97 um Diamum 44.04-56.13	D97 = 1 Diff 0.00	14.53 %	um Cumu? 100.00
D50 = 7.509 ur Diam um 0.020-0.024 0.024-0.030	n D75	5 = 9.606 u Cumu% 0.00 0.00	1111 Dia 0.911 1.161	D84 = 10 m um 1-1.161 1-1.479	0.79 um	D90 =	11.97 um Diamum 44.04-56.13 56.13-71.52	D97 = 1 Diff 0.00 0.00	14.53 % 0 0	um Cumu? 100.00 100.00
D50 = 7.509 ur Diam um 0.020-0.024 0.024-0.030 0.030-0.039	n D77	5 = 9.606 u Cumu% 0.00 0.00 0.00	IM Dia 0.911 1.161 1.475	D84 = 10 m um 1-1.161 1-1.479 9-1.885	Diff% 0.00 0.00 0.01	D90 = <u>Cumu%</u> 0.00 0.00 0.01	11.97 um Diam um 44.04 56.13 56.13-71.52 71.52-91.14	D97 = 1 Diff" 0.00 0.00	14.53 % 0 0	um Cumu9 100.00 100.00
D50 = 7.509 ur Diam um 0.020-0.024 0.024-0.030	n D75	5 = 9.606 u Cumu% 0.00 0.00	Diau 0.911 1.161 1.475 1.885	D84 = 10 m um 1-1.161 1-1.479	0.79 um	D90 =	11.97 um Diamum 44.04-56.13 56.13-71.52	D97 = 1 Diff 0.00 0.00	14.53 % 0 0 0	
D50 = 7.509 ur Diam um 0.020-0.024 0.024-0.030 0.030-0.039 0.039-0.049	n D77	5 = 9.606 u Cumu% 0.00 0.00 0.00 0.00	Dia 0.911 1.161 1.475 1.885 2.403	D84 = 10 m um 1-1.161 1-1.479 9-1.885 5-2.403	D.79 um Diff% 0.00 0.00 0.01 0.27	D90 = Cumu% 0.00 0.01 0.28	Diam um 44.04 56.13 56.13 71.52 71.52 91.14 91.14 116.1	D97 =) Diff 0.00 0.00 0.00 0.00	14.53 % 0 0 0 0	um Cumu9 100.00 100.00 100.00 100.00
D50 = 7.509 ur Diam um 0.020-0.024 0.024-0.030 0.030-0.039 0.039-0.049 0.049-0.063	n D77	5 = 9.606 u <u>Cumu%</u> 0.00 0.00 0.00 0.00 0.00	IM Diau 0.911 1.161 1.475 1.885 2.403 3.062	D84 = 10 m um 1-1.161 1-1.479 9-1.885 5-2.403 3-3.062	Diff% 0.00 0.00 0.01 0.27 1.18	D90 = Cumu% 0.00 0.00 0.01 0.28 1.46	Diam um 44.04 56.13 56.13 71.52 71.52 91.14 91.14 116.1 116.1 - 147.9	D97 =) Diff 0.00 0.00 0.00 0.00 0.00	14.53 % 0 0 0 0 0 0 0 0 0 0 0	um Cumu9 100.00 100.00 100.00 100.00 100.00
D50 = 7.509 ur Diam um 0.020-0.024 0.024-0.030 0.030-0.039 0.039-0.049 0.049-0.063 0.063-0.080	n D77	5 = 9.606 u <u>Cumu%</u> 0.00 0.00 0.00 0.00 0.00 0.00	IM Dian 0.911 1.161 1.475 1.885 2.403 3.062 3.902	D84 = 10 m um 1-1.161 1-1.479 9-1.885 5-2.403 3-3.062 2-3.902	D.79 um Diff% 0.00 0.00 0.01 0.27 1.18 3.42	D90 = Cumu% 0.00 0.00 0.01 0.28 1.46 4.88	Diam um 44.04-56.13 56.13-71.52 71.52-91.14 91.14-116.1 116.1-147.9 147.9-188.5	D97 =) Diff 0.00 0.00 0.00 0.00 0.00 0.00 0.00	14.53 % 0 0 0 0 0 0 0	um Cumu9 100.00 100.00 100.00 100.00 100.00 100.00
D50 = 7.509 ur Diam um 0.020-0.024 0.024-0.030 0.030-0.039 0.039-0.049 0.049-0.063 0.063-0.080 0.080-0.102	n D77	5 = 9.606 u <u>Cumu%</u> 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	IM Dian 0.911 1.161 1.475 1.885 2.403 3.062 3.902 4.972	D84 = 10 m um 1-1.161 1-1.479 9-1.885 5-2.403 3-3.062 2-3.902 2-4.972	D.79 um Diff% 0.00 0.00 0.01 0.27 1.18 3.42 9.06	D90 = Cumu% 0.00 0.00 0.01 0.28 1.46 4.88 13.94	Diam um 44.04-56.13 56.13-71.52 71.52-91.14 91.14-116.1 116.1-147.9 147.9-188.5 188.5-240.3	D97 =) Diff 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	14.53 % 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	um Cumu9 100.00 100.00 100.00
D50 = 7.509 ur Diam um 0.020-0.024 0.024-0.030 0.030-0.039 0.039-0.049 0.049-0.063 0.063-0.080 0.080-0.102 0.102-0.131	n D77	5 = 9.606 u <u>Cumu%</u> 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	IM Dian 0.911 1.161 1.475 1.885 2.403 3.062 3.902 4.972 6.336	D84 = 10 m um 1-1.161 1-1.479 9-1.885 5-2.403 3-3.062 2-3.902 2-4.972 2-6.336	Diff% 0.00 0.00 0.00 0.01 0.27 1.18 3.42 9.06 18.41	D90 = Cumu% 0.00 0.00 0.01 0.28 1.46 4.88 13.94 32.35	Diam um 44.04-56.13 56.13-71.52 71.52-91.14 91.14-116.1 116.1-147.9 147.9-188.5 188.5-240.3 240.3-306.2	D97 =) Diff 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0	% 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	um Cumu9 100.00 100.00 100.00 100.00 100.00 100.00 100.00
D50 = 7.509 ur Diam um 0.020-0.024 0.024-0.030 0.030-0.039 0.039-0.049 0.049-0.063 0.063-0.080 0.080-0.102 0.102-0.131 0.131-0.167	n D77	5 = 9.606 u <u>Cumu%</u> 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	IM Dian 0.911 1.161 1.475 1.885 2.403 3.062 3.902 4.972 6.336 8.074	D84 = 10 m um 1-1.161 1-1.479 9-1.885 5-2.403 3-3.062 2-3.902 2-4.972 2-6.336 5-8.074	Diff% 0.00 0.00 0.00 0.01 0.27 1.18 3.42 9.06 18.41 25.74	D90 = Cumu% 0.00 0.00 0.01 0.28 1.46 4.88 13.94 32.35 58.09	Diam um 44.04-56.13 56.13-71.52 71.52-91.14 91.14-116.1 116.1-147.9 147.9-188.5 188.5-240.3 240.3-306.2 306.2-390.2	D97 =) Diff" 0.00 0.	14.53 % 0	um Cumu9 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
D50 = 7.509 ur Diam um 0.020-0.024 0.024-0.030 0.030-0.039 0.039-0.049 0.049-0.063 0.063-0.080 0.080-0.102 0.102-0.131 0.131-0.167 0.167-0.212	n D77	5 = 9.606 u <u>Cumu%</u> 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	IM Dian 0.911 1.161 1.475 1.885 2.403 3.062 3.902 4.972 6.336 8.074 10.28	D84 = 10 m um 1-1.161 1-1.479 9-1.885 5-2.403 3-3.062 2-3.902 2-4.972 2-6.336 5-8.074 4-10.28	Diff% 0.00 0.00 0.00 0.01 0.27 1.18 3.42 9.06 18.41 25.74 22.85	D90 = Cumu% 0.00 0.01 0.28 1.46 4.88 13.94 32.35 58.09 80.94	11.97 um Diam um 44.04-56.13 56.13-71.52 71.52-91.14 91.14-116.1 116.1-147.9 147.9-188.5 188.5-240.3 240.3-306.2 306.2-390.2 390.2-497.2	D97 =) Diff" 0.00 0.	14.53 % 0	um Cumu ⁹ 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
Diam um 0.020-0.024 0.024-0.030 0.030-0.039 0.039-0.049 0.049-0.063 0.063-0.080 0.080-0.102 0.102-0.131 0.131-0.167 0.167-0.212 0.212-0.271	n Diff% 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0	5 = 9.606 u 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	IM Dian 0.911 1.161 1.479 1.885 2.403 3.062 3.902 4.972 6.336 8.074 10.22 13.11	D84 = 10 m um 1-1.161 1-1.479 9-1.885 5-2.403 3-3.062 2-3.902 2-4.972 2-6.336 5-8.074 4-10.28 8-13.11	Diff% 0.00 0.00 0.00 0.01 0.27 1.18 3.42 9.06 18.41 25.74 22.85 13.05	D90 = Cumu% 0.00 0.01 0.28 1.46 4.88 13.94 32.35 58.09 80.94 93.99	Diam um 44.04-56.13 56.13-71.52 71.52-91.14 91.14-116.1 116.1-147.9 147.9-188.5 188.5-240.3 240.3-306.2 306.2-390.2 390.2-497.2 497.2-633.6	D97 =) Diff" 0.00 0.	14.53 % 0	um Cumu ⁹ 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00

0.00


0.00

100.00

100.00

1311-1670

1670-2000

27.12-34.56

34.56-44.04

0.561-0.715

0.715-0.911

0.00

0.00

0.00

0.00

Diam um	Percent
0.100	0.00
0.200	0.00
0.500	0.00
1.000	0.00
2.000	0.03
5.000	14.27
10.00	78.56
20.00	99.94
45.00	100.00
75.00	100.00

0.00

0.00

100.00

100.00

Specification

Testing parameter	Material
Particle size distribution	Suspension, emulsion, dry powder
General	Analytical Technologies Sizer 3002
Theory	Laser diffraction
Analysis theory	Mie and Fraunhofer
Testing speed	3kHz
Typical measurement time	≤10second
Size	
Size range	0.02 - 2000μm
Number of size classes	More than 100 customized grades
Accuracy	≤0.5% (GBRM D50)
Repeatability	≤0.5% (GBRM D50)
Resolution ratio	Single peak, double peak, multi-peak
Optics	
Green light source	Max.3mW, Semiconductor optical fiber laser, 635nm
Lens arrangement	Dual lenses on the right and left of sample cell
Lens design	F-Theta Lenses
Effective focal length	223mm
Detector	
Arrangement	Log-spaced array
Quantity	90 pieces(forward, lateral, backward)
Light path adjustment	Intelligent automatic alignment
Sample dispersion system	
Dispersion type	Wet and dry
Dispersion system	Ultrasound 50W, 38KHz dry-run protection system
Water circulation	Centrifugal pump 3000 -8000ml/min, auto water intake and rinsing
Water capacity	600ml
Software	
21 CFR Part 11	Enable
SOP Designer	Enable
Report	More than 14 formats report
Auto test	Enable
Data export	EXCEL, PDF,WORD,JPG and etc.
System compliance	
Laser class	Class I laser product
System	
Supply voltage	220VAC
Dimension	800mm x 500mm x 410mm (L x W x H)
Weight	45kg
Computer specification	
Computer interface	At least a USB2.0 port required
Operation system	Windows XP, Windows 7,8 or 10
Hardware specification	Intel Core I5, 4GB RAM, 250GB HD

Analytical [®] Technologies Limited

Analytical [®] Technologies Limited

HPLC Servicing, Validation, Trainings and Preventive Maintenance : HPLC Servicing :HPLC Servicing : We have team of service engineers who can attend to any make of HPLC promptly @the most affordable cost. Trainings :We also take up preventive Maintenace to reduce downtime of HPLC's Trainings. AMC's/CMC :We offer user training both in-House and at customer sites on HPLC principles, operations, trouble-shooting. Validations :We have protocols for carrying out periodic Validations as per GLP/GMP/USFDA norms. Instruments :We offer instruments/Renting Services Modules like pumps,detector etc. on Rent.

About Analytical Technologies

Analytical Technologies is synonymous for offering technologies for doing analysis and is the Fastest Growing Global Brand having presence in at least 96 countries across the global. Analytical Technologies Limited is an ISO:9001 Certified Company engaged in Designing, Manufaturing, Marketing & providing Services for the Analytical, Chromatography, Spectroscopy, Bio Technology, Bio Medical, Clinical Diagnostics, Material Science & General Laboratory Instrumentation. Analytical Technologies, India has across the Country operations with at least 4 Regional Offices, 6 Branch Offices & Service Centers. Distributors & Channel partners worldwide.

Our Products & Technologies

				B		
UV/VIS Spectro 2060+ Double Beam	FTIR	Gas Chromatograph 3000	Gas Chromatograph 2979 Plus	Flash Chromatograph	Atomic Absorption Spectrophotometer	Liquid Partical Counter
				0		
Optical Emission Spectrophotometer	DSC/TGA	NOVA 2020 plus Automated Bio Chemistry Analyzer	HEMA 2020 / Hematology Analyzer	Micro Plate Reader/Washer	URINOVA 2800 Urine Analyzer	Total Organic Carbon
5		CO		DE	M	
Fully Automated CLIA	MoVA Basic Semi -Auto Chemistry Analyzer	PCR/Gradient PCR/ RTPCR	Blood Gas Analyzer	Random access Analyzer for immunoassay	r Semen Analyzer	Water purification system

Proteins & clinical chemistry

Corporate Social Responsibility

Analytical Foundation is a nonprofit organization (NGO) found for the purpose of:

1.Research & Innovation Scientist's awards/QC Professional Award : Quality life is possible by innovation only and the innovation is possible by research only, hence ANALYTICAL FOUNDATION is committed to identify such personallities for their contributions across various field of Science and Technoligy and awarding them yearly. To participate for award, send us your details of research / testing / publication at Info@analyticalfoundation.org

2. Improving quality of life by offering YOGA Training courses, Work shops/Seminars etc.

3. ANALYTICAL FOUNDATION aims to DETOXIFY human minds, souls and body by means of yoga, Meditation, Ayurveda, Health Care, Awards, Media, Events, Camps etc.

Reach us @

HPLC Solutions MultipleLabs

Corporate & Regd. Office: Analytical House, # E67 & E68, Ravi Park, Vasna Road, Baroda, Gujarat 390 015. INDIA T: +91 265 2253620 +91 265 2252839 +91 265 2252370 F: +91 265 2254395

- Analytical Bio-Med Analytical Dis E: info@hplctechnologies.com info@multiplelabs.com info@analyticalgroup.net
 - info@analyticalgroup.net info@analyticalbiomed.com

Analytical Distributors Analytical Foundation (Trust)

W. www.ais-india.com www.analycalgroup.net www.hplctechnologies.com www.multiplelabs.com Sales & Support Offices: across the country : Distributors & Channel partners World Wide

Company reserves rights to add/delete/modify the contents / technical specificationsof the catalogue without prior notice

Vote